Research Series No. 25

DON'T THEY ALL MEASURE THE SAME THING?
CONSEQUENCES OF SELECTING
STANDARDIZED TESTS

Robert E. Floden,
Andrew C. Porter, William H. Schmidt,
and Donald J. Freeman

Published By
The Institute for Research on Teaching
252 Erickson Hall
Michigan State University
East Lansing, Michigan 48824

July 1978

The work reported herein is sponsored by the Institute for Research
on Teaching, College of Education, Michigan State University. The Insti-
tute for Research on Teaching is funded primarily by the Teaching Divi-
sion of the National Institute of Education, United States Department of
Health, Education, and Welfare. The opinions expressed in this publica-
tion do not necessarily reflect the position, policy, or endorsement of
the National Institute of Education. (Contract No. 400-76-0073)
The Institute for Research on Teaching was founded at Michigan State University in 1976 by the National Institute of Education. Following a nationwide competition in 1981, the NIE awarded a second contract to the IRT, extending work through 1984. Funding is also received from other agencies and foundations for individual research projects.

The IRT conducts major research projects aimed at improving classroom teaching, including studies of classroom management strategies, student socialization, the diagnosis and remediation of reading difficulties, and teacher education. IRT researchers are also examining the teaching of specific school subjects such as reading, writing, general mathematics, and science, and are seeking to understand how factors outside the classroom affect teacher decision making.

Researchers from such diverse disciplines as educational psychology, anthropology, sociology, and philosophy cooperate in conducting IRT research. They join forces with public school teachers, who work at the IRT as half-time collaborators in research, helping to design and plan studies, collect data, analyze and interpret results, and disseminate findings.

The IRT publishes research reports, occasional papers, conference proceedings, a newsletter for practitioners, and lists and catalogs of IRT publications. For more information, to receive a list or catalog, and/or to be placed on the IRT mailing list to receive the newsletter, please write to the IRT Editor, Institute for Research on Teaching, 252 Erickson Hall, Michigan State University, East Lansing, Michigan 48824-1034.

Co-Directors: Jere E. Brophy and Andrew C. Porter

Associate Directors: Judith E. Lanier and Richard S. Prawat

Editorial Staff
Editor: Janet Eaton
Assistant Editor: Patricia Nischan
Research Series No. 25

DON'T THEY ALL MEASURE THE SAME THING?
CONSEQUENCES OF SELECTING
STANDARDIZED TESTS

Robert E. Floden,
Andrew C. Porter, William H. Schmidt,
and Donald J. Freeman

Published By

The Institute for Research on Teaching
252 Erickson Hall
Michigan State University
East Lansing, Michigan 48824

Printed and Distributed
by the
College of Education
Michigan State University

July 1978

The work reported herein is sponsored by the Institute for Research on Teaching, College of Education, Michigan State University. The Institute for Research on Teaching is funded primarily by the Teaching Division of the National Institute of Education, United States Department of Health, Education, and Welfare. The opinions expressed in this publication do not necessarily reflect the position, policy, or endorsement of the National Institute of Education. (Contract No. 400-76-0073)
Institute for Research on Teaching

The Institute for Research on Teaching was founded at Michigan State University in 1976 by the National Institute of Education. Following a nationwide competition in 1981, the NIE awarded a second contract to the IRT, extending work through 1984. Funding is also received from other agencies and foundations for individual research projects.

The IRT conducts major research projects aimed at improving classroom teaching, including studies of classroom management strategies, student socialization, the diagnosis and remediation of reading difficulties, and teacher education. IRT researchers are also examining the teaching of specific school subjects such as reading, writing, general mathematics, and science, and are seeking to understand how factors outside the classroom affect teacher decision making.

Researchers from such diverse disciplines as educational psychology, anthropology, sociology, and philosophy cooperate in conducting IRT research. They join forces with public school teachers, who work at the IRT as half-time collaborators in research, helping to design and plan studies, collect data, analyze and interpret results, and disseminate findings.

The IRT publishes research reports, occasional papers, conference proceedings, a newsletter for practitioners, and lists and catalogs of IRT publications. For more information, to receive a list or catalog, and/or to be placed on the IRT mailing list to receive the newsletter, please write to the IRT Editor, Institute for Research on Teaching, 252 Erickson Hall, Michigan State University, East Lansing, Michigan 48824-1034.

Co-Directors: Jere E. Brophy and Andrew C. Porter

Associate Directors: Judith E. Lanier and Richard S. Prawat

Editorial Staff
 Editor: Janet Eaton
 Assistant Editor: Patricia Nischan
Abstract

Standardized tests do not all measure the same content knowledge, despite the prevailing opinion to the contrary. The authors argue that there are differences in the content covered by the major tests and that those differences have consequences, not only for assessing district progress, but also for the content of classroom instruction.
Don't They All Measure the Same Thing?
Consequences of Selecting Standardized Tests¹

Robert E. Floden,
Andrew C. Porter, William H. Schmidt,
and Donald J. Freeman²

Recently, several authors have called attention to the importance of consistency between the content of instruction and the content of tests used to assess instruction (e.g., Walker & Schaffarzick, 1974; Wiley, Note 1; Porter, Schmidt, Floden, & Freeman, Note 2). If test content does not match instructional content, test results might reflect a distorted picture of the instruction effects. Many tests, it has been found, cover only a fraction of the content presented in many elementary classrooms. The major standardized achievement tests for elementary schools, for example, focus on basic skills, and, as a result, the test scores reflect only achievement in basic skills, rather than achievement in the total instructional content covered.

Many people acknowledge that standardized test scores do not reflect instruction in content outside the basic skills, but it has seldom been recognized that even the definition of basic skills may vary from test to test. In fact, the tests do not all measure the same content knowledge, despite the prevailing opinion to the contrary (e.g., Cooley & Lohnes, 1976). This suggests that particular attention should

¹This paper was presented at the UCLA Center for the Study of Education Winter Conference on Measurement and Methodology, 1978.

²The authors are senior researchers in the Institute for Research on Teaching and members of IRT's External Factors Research Group.
be paid to the content of the tests chosen to ensure that test results reflect achievement on the content considered important in a local school district.

While the effect of test content on test scores has been recognized, the effect of test content on instruction has received little attention. Although some people believe that the initiation of a testing program may have global effects on instruction (leading perhaps to greater emphasis on the basic skills), more subtle shifts in instructional content brought on by use of particular tests are only beginning to be investigated. These and other influences on a teacher's selection of instructional content deserve careful investigation.

District Test Use

Many school district administrators are concerned with raising student achievement in the basic skills. This concern is reflected by such administrative policies as constructing lists of objectives, meeting with teachers in workshops to discuss goals and methods, rewarding school building administrators for improved performance in their schools, and testing student progress on a regular basis. Although these actions are frequently coupled with the development of criterion-referenced tests, nearly all districts continue to administer norm-referenced standardized achievement tests to assess improvement within the district and to compare their district performance with national norms.³

Little is known about the criteria administrators use to select a test series. Factors considered probably include cost, ease of

³The terms criterion-referenced and norm-referenced tests have taken on a variety of meanings. In this context, we define criterion-referenced tests as those in which an individual is assessed relative to a certain standard, whereas norm-referenced tests assess the individual's performance relative to other individuals or to a group average.
the fourth-grade mathematics content covered by the four test series.\footnote{Copyright dates of the tests which were analyzed are as follows: SAT – 1973; Iowa – 1971; MAT – 1970; CTBS – 1968.}

We used an iterative process of analysis and classification of items on the SAT to develop a taxonomy for describing the tests. A complete presentation of the taxonomy is given in Figure 1; each cell in the classification matrix corresponds to a topic that a teacher might elect to cover. (The process of test description has been described elsewhere in greater detail [6] Porter et al., Note 2; Schmidt, Porter, Floden, & Freeman, Note 37.)

Comparisons of the four tests, detailed in Table 1, indicate that although they are quite similar in some respects, they also have striking differences. On the "operations" dimension, the tests corresponded quite closely in the percentages of items involving "subtract without borrowing" (6-8%), "add or subtract fractions without a common denominator" (0-2%), and "divide with remainder" (1%). For the other levels, however, differences were apparent. Twenty-one percent of the items on the MAT, for example, involved addition, while the corresponding figures for the Iowa, SAT, and CTBS were only 12, 13, and 14% respectively. The Iowa had at least 5 percentage points fewer multiplication items than the other tests. Grouping was tested by the SAT but not by the MAT or the CTBS.

With respect to the nature of the material, more similarities than differences were found, but the differences may be quite significant. Six percent of the items on the CTBS, for example, involved percentage, while the Iowa and MAT had no such items. The MAT and SAT both included items on alternative number systems, while the Iowa and CTBS did not.
MODE OF PRESENTATION

<table>
<thead>
<tr>
<th>Nature of the Material</th>
<th>Operation</th>
<th>Graphics, Figures, Tables or Physical Objects</th>
<th>Operation(s) Specified</th>
<th>Operation(s) Not Specified (Story Problems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>single digits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole Numbers</td>
<td>multiple digit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>multiple digits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fractions</td>
<td>single</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>multiple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decimals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percents</td>
<td>Alternate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Place Value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Algebra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Essential Units of Measurement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geometric Figures</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operations

1. Add
2. Subtract w/o borrowing
3. Subtract with borrowing
4. Add or subtract fractions
5. Multiply
6. Divide w/o remainder
7. Divide with remainder
8. Combination
9. Grouping
10. Identify Equivalents
11. Identify Rule (Order)
12. Identify Terms*

* Be sure to identify specifics on attached page.

Figure 1.
Table 1

ITEM DISTRIBUTIONS FOR EACH FACTOR ACROSS TESTS

FOURTH GRADE LEVEL

<table>
<thead>
<tr>
<th>Mode of Presentation</th>
<th>IOWA</th>
<th>MAT</th>
<th>SAT</th>
<th>CTBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>graphs, figures, tables, etc.</td>
<td>43</td>
<td>15</td>
<td>21</td>
<td>19</td>
</tr>
<tr>
<td>operation(s) specified</td>
<td>29</td>
<td>52</td>
<td>53</td>
<td>59</td>
</tr>
<tr>
<td>operation(s) not specified</td>
<td>29</td>
<td>32</td>
<td>27</td>
<td>22</td>
</tr>
<tr>
<td>(N=84)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nature of Material</th>
<th>IOWA</th>
<th>MAT</th>
<th>SAT</th>
<th>CTBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>single digits</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>single and multiple digits</td>
<td>12</td>
<td>20</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>multiple digits</td>
<td>24</td>
<td>19</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>total -- whole numbers</td>
<td>47</td>
<td>54</td>
<td>66</td>
<td>39</td>
</tr>
<tr>
<td>single fraction</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>multiple fractions</td>
<td>5</td>
<td>3</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>decimals</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>percents</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>alter. number systems</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>place value</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>number sentences</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>algebraic sentences</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>essen. units meas.</td>
<td>10</td>
<td>15</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>geometric figures</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>other</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>(N=115)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N=116)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N=113)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operations</th>
<th>IOWA</th>
<th>MAT</th>
<th>SAT</th>
<th>CTBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>12</td>
<td>21</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>subtract w/o borrowing</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>subtract with borrowing</td>
<td>11</td>
<td>11</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>add or subtract fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w/o common denominator</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>multiply</td>
<td>11</td>
<td>19</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>divide w/o remainder</td>
<td>6</td>
<td>9</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>divide with remainder</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>combination</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>grouping</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>identify equivalents</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>identify rule (order)</td>
<td>11</td>
<td>3</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>identify terms</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>(N=113)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

entries are percents
The significance of these differences becomes more apparent when one considers that a single correct answer on the SAT math subtest can add approximately .2 to a student's grade equivalent score, if it is near the middle of the norm distribution. Since improvements of a fraction of a grade level are generally considered important, it seems likely that the differences among tests could result in score differences that would also be considered important.

Although our analysis of the mathematics tests may be open to criticism, it does illustrate that differences can and sometimes do exist among the standardized tests, tests often thought to be virtually interchangeable. Hence, as we have previously suggested, content covered is a factor which administrators must consider when selecting standardized tests. A school district that emphasizes work with percentages in fourth grade would get a distorted picture of progress from the Iowa, which contains no percentage problems. On the other hand, a district which does not introduce percents until the sixth grade would be unnecessarily discouraged by the results of the CTBS, which contains 6% problems involving percentage.

Differences in supposedly equivalent tests have been found by other authors as well. Linn and Slinde (1977), for example, found that a change in test forms can lead to substantially different grade equivalent scores for low achieving children. Linn (Note 4) also discovered that even when tests have been empirically equated, the choice of test can greatly influence the estimate of program effects. Neither of these studies, however, attempted to explain the cause of discrepancy in results.
Differences in test content may partially explain the discrepancy. The content discrepancy may result, not from the test publishers' failure to include the appropriate content, but from a general lack of agreement on the definition of basic skills. In mathematics, for example, considerable attention was given during the 1960s to the question of whether or not material such as "elementary set theory" was part of the basic skills. That question—and others like it—was never answered, as evidenced by proceedings of a National Institute of Education (NIE) Conference in October 1975, directed at the question, "What are basic mathematical skills and learning?" (NIE, 1975).

It is proposed here that the determination of what mathematics is most worth learning is a task that will require careful and systematic study from the perspectives of several interest groups. (Helms & Graeber, 1975, p. 70)

The challenge to describe basic skills and learning in school mathematics is an assignment full of pitfalls. In the past five years, hundred of mathematics educators, school systems, professional groups and the National Assessment have been busily composing taxonomies of fundamental objectives for mathematics instruction at various grade levels. With few exceptions, these efforts to establish a reasonable list of basic skills have been failures. There has been no general agreement among the competing groups. Moreover, the implementation of the various lists of curriculum guidelines threatens to produce fragmented mathematics programs that resemble occupational training more than they resemble education in mathematical methods and understandings likely to be of long range value. (Fey, 1975, p. 51, emphasis added)

These educators may have exaggerated the differences of opinion concerning composition of the basic skills, but it cannot be assumed without argument that one set of skills has general sanction.

Empirical Undimensionality

Empirical studies of the standardized tests seem to contradict the findings of our content analysis. High internal consistency has been reported for virtually all subtests, which would seem to indicate that the
test developers have been successful in constructing unidimensional tests. Developers of the SAT tests report, for example, that the mathematics sub-tests of concepts, computation, and applications given to beginning fifth graders (Intermediate Level 1, Form A, 1973) have internal consistency reliabilities of .87, .91, and .93, respectively.\(^5\) Evidence of internal consistency has been taken as evidence that all items measure a single trait, and, as such, brings into question the utility of identifying subsets of items (see, for example, Goolsby, 1966).

There are at least two reasons, however, why conclusions based upon evidence of empirical unidimensionality may be misleading. The first stems from the definition of empirical unidimensionality; the second is a function of the ways in which unidimensionality is estimated.

The empirical definition of unidimensionality calls for a large first factor on the item intercorrelation matrix. Thus, empirical unidimensionality is a static concept specific to the time of test administration and to the population of respondents. For purposes of illustration, consider a population of respondents and a set of items that yield an item intercorrelation matrix with equal off-diagonal elements. Let the respondents be beginning fourth-grade students, and let half the items require division with remainder and half the items require multiplication of three-digit numbers. An intervention focused exclusively on multiplication of three-digit numbers might uniformly reduce the difficulty of half the items. In this case, the only effect the intervention would have on the item intercorrelation matrix would be to create a difficulty factor. Yet, despite empirical uni-

\(^5\) These figures are reported in the SAT Manual, Norms Booklet, Form A, p. 15 (copyright 1973 by Harcourt Brace Jovanovich, Inc.).
dimensionality -- both prior to and after the intervention -- it is clear that there is a useful distinction between the two subsets of items. It is necessary, therefore, to ask whether or not a test is unidimensional relative to differences in instruction (i.e., Does all fourth-grade mathematics instruction affect all item difficulties equally?). Searching for differential effects across items is analogous to searching for aptitude-by-treatment interactions (ATIs) and might be called the "search for item-by-treatment interactions" (ITIs).

Most test data, however, are not obtained from people receiving uniform instruction. Different students have different educational experiences, and these experiences may have different effects across items. If a test consists of sets of items defined by concepts such that within each set the effect of an intervention is constant, and if the effects of interventions vary with less than perfect correlation across sets of items, the sets of items should be reflected in the pattern of item intercorrelations; the intervention effects contribute to both the covariance and variance of items within a set but not to the covariance of items in different sets.

Estimates of internal consistency based on data from norm groups of standardized tests seem to challenge the importance of ITIs. The apparent unidimensionality of standardized tests, however, might only be evidence of the existence of a strong single dimension, not of the absence of content factors. The Spearman-Brown prophecy formula implies that the more concepts included, the stronger the general factor, and that the fewer items per concept, the less clearly defined the second-order concept factors. Evidence of an internally consistent test should not be taken as an indication that searching for ITIs in evaluations using that test is useless.
Effects on Classroom Instruction

Critics of testing are concerned about the global effects of testing programs, and the analyses above suggest that some effect specific to the test selected may also exist. But effects of testing must also be considered in the broader investigation of the way instructional content is affected by factors outside the classroom.

Many believe that testing programs have some influence on the content teachers present. The prevailing opinion is that teachers are apt to "teach to the test," that is, to present content that closely follows the content of the test (see, for example, Cooley & Lohnes, 1976). Two groups consider this phenomenon undesirable: those who believe that the tests represent only a fraction of the content that is important, and those who believe that teachers should exercise their own judgment in determining instructional content. On the other hand, those who believe that the content of instruction should be uniform across classrooms (perhaps focusing on the basic skills) may see testing programs as a valuable tool for determining classroom instructional content. Each group bases its assessment of the tests, in part, on the assumption that teachers teach to the test, but neither can provide much empirical evidence to support that assumption.

It may be that the institution of a testing program leads teachers to spend more time on the material in the general area of test coverage, but not on the specific items covered by the test. Teachers, for example, might pay attention to the titles of the subtests but rely on their own preconceived ideas about the content in those areas to determine what content to cover. On the other hand, they might consider the testing program an unwarranted imposition and pay no attention to it
at all. In short, while the notion is plausible, it is far from certain that teachers teach to the specific content covered by tests used in their districts.

The likelihood that teachers teach to the test seems even smaller when one considers the other factors that might influence content choice. An alternative influence frequently cited in the literature is the textbook supplied to the teacher. Schutz (Note 5) has indicated that while teachers may initially claim that they select content by considering abstract goals of instruction, when pressed for detail, they often admit that they teach whatever material is covered in the textbook used by their students. Lists of objectives issued by the school district are another likely source of influence. The objectives are generally intended to influence, if not determine, content choice; hence, they act as a strong competitor to testing programs. It is not difficult to add to the list of possible influences. Teacher conceptions of subject matter, teacher assessment of student achievement, and student interest in subject matter all might affect a teacher's choice of content. When these alternative, partial determinants of content are considered, the assumption that teachers teach to the test seems less reasonable.

Advice to School Districts

Implicit in this discussion are two suggestions which might help to guide school districts in their selection of standardized tests.

(These suggestions apply to the question of whether any testing should be conducted only insofar as they may help administrators determine the

The recommendations offered here are general; more specific recommendations must await the results of research currently underway at IRT. (Porter, Note 6; Floden, Note 7; Schmidt, Note 8, Freeman, Note 9.)
probable impacts of existing tests.)

First, the multitude of possible influences on content choice suggests that consistency is a minimal requirement if a district is to exercise control over instructional content in the classroom. If district administrators want specific content presented throughout the district, they would be well advised to ensure that the tools at their disposal are used toward that end. If textbook selection, test selection, and lists of objectives are all determined at the district level, then the administrator should make choices which will bring about consistent pressure on teachers to teach the desired content. To avoid losing ground by, say, choosing a textbook that covers different material from a carefully chosen test, administrators must make a thorough examination of tests, texts, and objectives. Furthermore, they should use whatever control they have over possible influences (such as parent pressure and principal pressure) to make sure that each emphasizes the same desired content.

Second, even if tests are ultimately found to have little specific influence on instructional content, it is still important that the content covered by the test match the content of most concern to those using the test results. The standardized tests do not all measure achievement in the same content areas, and the use of a test that assesses progress in an area of little concern to the district may be misleading.

Conclusion

The effects of test selection, both on the interpretation of results and on the content of instruction, have been over-simplified, denied, or ignored. Such treatment seems inappropriate when one considers that
an examination of four major tests has raised serious doubts about the assumption that the tests all measure the same achievement. If this widely-held assumption does not stand up to scrutiny, there is ample reason to question other assumptions about the effects of test selection.

Consideration of the effects of tests on content immediately calls to mind a broader area much in need of study -- the manner in which teachers choose instructional content. Research is needed to identify the mechanisms by which teachers respond to the multitude of pressures to choose instructional content. A first attempt at investigating this area is now underway at the Institute for Research on Teaching. In two parallel studies, the relative influences of six external factors are being examined. The factors are: testing program, set of objectives, textbooks, pressure from parents, pressure from teachers of higher grades, and pressure from the principal. In one study, teachers are asked to indicate how they think they would react to these pressures in a hypothetical situation. In the second study, assessments are being made, in a number of school districts, of the relationship between content covered and the external pressures at work (Porter, Note 6; Floden, Note 7; Schmidt, Note 8; Freeman, Note 9). Both studies deal only with fourth-grade mathematics. While these studies should provide some clues about the ways in which teachers determine content choices, the process is surely complex and will require prolonged study before it is well understood.

If content covered is important in terms of student achievement (and this is generally acknowledged), then the means by which teachers choose content, and the means by which administrators can influence that choice must be better understood. Indeed, increased understanding in these areas could be the key to the much sought improvement in student performance.
Selecting tests on the basis of the content they cover may provide immediate benefits and can serve as a starting point for the investigation of the relationships among testing, achievement, and content coverage.
Reference Notes

References

