Occasional Paper No. 100

THE USE OF THE ZONE OF PROXIMAL DEVELOPMENT IN EVERYDAY AND SCHOOL CONTEXTS: A VYGOTSKIAN CRITIQUE

John S. Zeuli

Published by

The Institute for Research on Teaching
252 Erickson Hall
Michigan State University
East Lansing, Michigan 48824-1034

October 1986

This work is sponsored in part by the Institute for Research on Teaching, College of Education, Michigan State University. The Institute for Research on Teaching is funded primarily by the Office of Educational Research and Improvement, United State Department of Education. The opinions expressed in this publication do not necessarily reflect the position, policy, or endorsement of the Office or the Department. (Contract No. 400-81-0014)
Institute for Research on Teaching

The Institute for Research on Teaching was founded at Michigan State University (MSU) in 1976 by the National Institute of Education. Following a nationwide competition in 1981, the NIE awarded a second five-year contract to MSU. Funding is also received from other agencies and foundations for individual research projects.

The IRT conducts major research projects aimed at improving classroom teaching, including studies of classroom management strategies, student socialization, the diagnosis and remediation of reading difficulties, and teacher education. IRT researchers are also examining the teaching of specific school subjects such as reading, writing, general mathematics, and science and are seeking to understand how factors outside the classroom affect teacher decision making.

Researchers from such diverse disciplines as educational psychology, anthropology, sociology, and philosophy cooperate in conducting IRT research. They join forces with public school teachers who work at the IRT as half-time collaborators in research, helping to design and plan studies, collect data, analyze and interpret results, and disseminate findings.

The IRT publishes research reports, occasional papers, conference proceedings, a newsletter for practitioners, and lists and catalogs of IRT publications. For more information, to receive a list or catalog, and/or to be placed on the IRT mailing list to receive the newsletter, please write to the IRT Editor, Institute for Research on Teaching, 252 Erickson Hall, Michigan State University, East Lansing, Michigan 48824-1034.

Co-Directors: Jere E. Brophy and Andrew C. Porter

Associate Directors: Judith E. Lanier and Richard S. Prawat

Editorial Staff
Editor: Sandra Gross
Assistant Editor: Sally B. Pratt
Abstract

Cognitive psychologists have used Vygotsky's (1978) zone of proximal development as a tool to understand how learning takes place in everyday social contexts and school-like experimental tasks. This paper critically analyzes Rogoff and Gardner's use of Vygotsky's zone of proximal development to explain learning in school-like tasks. These authors place primary emphasis on how the adult should make connections to children's everyday, familiar concepts. I argue that this is inconsistent with Vygotsky's characterization of school learning. In the critique, examples are drawn from Vygotsky's work and from more recent research on instruction to support this position. The analysis also draws on current research in science education to support the view that students' everyday concepts may interfere with learning unfamiliar, scientific concepts.
THE USE OF THE ZONE OF PROXIMAL DEVELOPMENT IN
EVERYDAY AND SCHOOL CONTEXTS: A VYGOTSKIAN CRITIQUE

John S. Zeuli

Using Vygotsky's (1978) zone of proximal development as an analytic
tool, cognitive psychologists (Rogoff & Lave, 1984) have studied how learning
takes place in everyday social contexts. Included in this group of studies
are suggestions concerning how learning occurs more effectively in school-
like experimental tasks (Rogoff & Gardner, 1984). For both everyday and
school-like tasks, these researchers suggest that an adult should make con-
nections to what the learner already knows in order to promote learning. The
aim of this paper is to analyze critically the claim that learning within the
student's zone of proximal development is enhanced by "making connections to
what the learner already knows."

It is argued that Rogoff's and Gardner's use of Vygotsky's theory to
explain learning in school-like tasks places primary emphasis on how the
adult should connect the task to children's everyday, familiar concepts.
Their analysis, however, is inconsistent with Vygotsky's characterization of
school learning. Vygotsky emphasized that school learning in the zone of
proximal development is advanced by helping the student understand decontext-
ualized concepts within a discipline. Connections to students' everyday
concepts come later. In the critique examples are drawn from Vygotsky's work

1 This paper is based on a presentation given at the annual meeting of the American Educational Research Association, San Francisco, April 1986.

2 John S. Zeuli is a research assistant with the Conceptual Analytic Project. The author gratefully acknowledges the intellectual support provided by Robert E. Floden and Margret Buchmann, particularly, their work (Floden, Buchmann, & Schwille, 1984; in press) which led to a rethinking of an interpretation of Vygotsky's learning theory as applied to educational settings. The author remains responsible for any errors in extrapolation that might remain.
and from more recent research on instruction (Collins & Stevens, 1982) to support this position. The analysis also draws on current research in science education to support the view that students' everyday concepts may interfere with learning unfamiliar, scientific concepts (Driver, 1983; Eaton, Anderson, & Smith, 1984; Roth, 1985). I consider the impact of this analysis for the use of Vygotsky's theory to promote school learning.

Social Context: The Focus of Analysis for Individual Development

Contemporary Western cognitive psychology has been criticized for its excessive concern "with the isolated, self-contained agent and ignoring the issue of how psychological processes are normally embedded within social settings" (Vygotsky, 1981). In contrast, Soviet approaches to psychology have focused on the social origins of individuals' cognitive abilities. Soviet research, especially Vygotsky's (1962, 1978) seminal work, has contributed significantly to our understanding of how social interaction provides the basis for individual cognitive abilities. Vygotsky (1978) proposed that the higher mental functions and skills individuals come to possess first appear on the social level and, later, through cooperative interactions with an adult or more capable peers:

An interpersonal process is transformed into an intra-personal one. Every function in the child's cultural development appears twice: first, on the social level, and later, on the individual level; first, between people (interpsychologically), and then inside the child (intrapsychologically). This applies to voluntary attention, to logical memory and to the formation of concepts. All the higher functions originate as actual relations between human individuals. (p. 57)

Vygotsky's zone of proximal development (1962, 1978) has provided researchers with a tool for understanding how this transition occurs. The zone represents a phase in development in which a person is unable to perform a task alone but can eventually accomplish and internalize it with the help
and supervision of someone more experienced. Bruner (1982) has described the zone as "the child's ability to recognize the value of hints and props even before he is conscious of their full significance" (p. 852). For Vygotsky, a key ingredient for learning within the zone of proximal development was instruction that preceded maturing abilities. The more experienced person takes major responsibility for structuring the interaction, leading the other through the steps of a task, and providing the necessary support until the learner is able to do the task independently:

Instruction is good only when it proceeds ahead of development, when it awakens and rouses to life those functions which are in the process of maturing or in the zone of proximal development. It is in this way that instruction plays an extremely important role in development. (cited in Laboratory of Comparative Human Cognition, 1983, pp. 334-335)

Wertsch (1981) notes that some Western investigators have seriously considered the issue of the social origins of cognitive abilities. Cole and Scribner (1974, 1977; see also Scribner & Cole, 1981) have emphasized that researchers must understand how cognitive tasks fit into the child's cultural activities, especially when performing school-like tasks for intelligence tests. Cognitive deficits are frequently assumed on the basis of psychological tests when, after manipulation of the task environment, the child performs the task competently (Erickson, 1984, 1986; Mehan, 1981). Further, Vygotsky's theory of learning has influenced how Western psychologists assess children's intelligence. Instead of focusing solely on individual accomplishments, children's ability to take advantage of hints and props is viewed as a more adequate gauge of intelligence (Brown & French, 1979).

Researchers at the Laboratory of Comparative Human Cognition (1983) have continued and expanded this line of research. Their work centers on how cultures arrange the selection of learning contexts for children. Further, they have studied how learning occurs among participants working within the
zone of proximal development. Research on everyday cognition (Rogoff & Lave, 1984) is part of the tradition of these studies. Cognitive psychologists studying everyday cognition have described how learning occurs in a variety of social contexts, ranging from observing adults as they calculate and compare supermarket food prices (Lave, Murtaugh, & de la Rocha, 1984) to studying mothers preparing their 6- to 9-year-olds for memory tasks such as those learned at home and school (Rogoff & Gardner, 1984).

As with other Western psychologists studying culture and cognition, cognitive psychologists see thinking as "intricately interwoven with the context of the problem to be solved" (Rogoff, 1984, p. 2). Further, they argue that skills children apparently do not possess when performing laboratory tasks "appear well developed when these same children meet similar problems in familiar contexts" (Rogoff, 1984, p. 2). Rogoff states further that cognitive abilities achieved in one context do not generalize to other domains. Yet, since some aspects of knowledge and skills do generalize to new situations, they have focused on how the more experienced members create links "between the context of a novel problem and the more familiar problem contexts" (Rogoff & Gardner, 1984, p. 96).

Guiding Instruction in Everyday and School Contexts

According to these researchers, how adults support learning in everyday contexts can be applied to school learning contexts. Greenfield (1984), for example, studied how adults provide "scaffolds" to children learning within the zone of proximal development. The scaffold metaphor suggests that the teacher builds on what the learner can do and "thus closes the gap between task requirements and the skill level of the learner" (p. 118). Greenfield compared how scaffolding occurred as young 1- to 2-year-old, middle-class children learned the rudiments of language development from their mothers to
the way 7- to 15-year-old members of a subsistent Indian culture learned to weave. After summarizing the similarities of support between the two contexts, she now questioned "the extent to which school instruction could be improved by greater use of the principle of scaffolding" (p. 137).

Rogoff and Gardner (1984) studied how scaffolding occurred as 32 middle-class mothers taught their 6- to 9-year-old children how to remember classification tasks resembling home and school activities. The school task involved organizing photographs of ordinary household objects into a tray divided into boxes whereas the home task dealt with putting grocery items away on shelves in a makeshift kitchen. The child performed the kitchen task first, then the school-like task. The authors focused on what types of interactions the mother used to guide "the child in transferring relevant concepts from more familiar settings to the relatively novel laboratory task" (Rogoff & Gardner, 1984, p. 101).

For the authors, the key point is that the mother must establish a context for the learner so that the interaction is intelligible and the learner can understand the new information. In this way, the mother is able to support performance at a level that the learner would be incapable of accomplishing alone. It is important to examine how these researchers believe learning within the zone of proximal development is accomplished and if their description is similar to Vygotsky's.

Rogoff and Gardner (1984) state that during instructional interaction between the mother and her child the mother created a familiar problem context to guide the transfer of skills and information (p. 98). Further analysis of their study suggests that the authors believe the school task should be connected to what the child is already familiar with in everyday contexts. The authors believe that the child's competence in the school-like task is facilitated by the mother making references to the child's familiar home
context: "The mother begins, as the experimenters suggested, by relating the experimental task to the more familiar task of organizing a kitchen after returning from the store" (p. 99). After describing a part of the dialogue between the mother and the child, Rogoff and Gardner state that the "child can interpret the mother's instructions relevant to the laboratory task according to the sequence of actions implied by the evocation of the familiar context" (p. 99). As the mother teaches her child the school-like task, Rogoff and Gardner make the following claim:

In instruction using the zone of proximal development, the adult oversees the construction of an instructional task by establishing references to what the child already knows. The context allows the child to build new information or skills into the existing knowledge structure. (p. 101)

The authors connected the way the mothers scaffolded the children's learning with Wertsch's and Stone's (1979) concept of successful instruction, in which the teacher "integrates explanation and demonstration with an emphasis on the learner's participation in the instructional activity" (Rogoff & Gardner, 1984, p. 102). This is then linked up with teaching and learning in both formal school and informal everyday learning. For both these contexts, learning within the zone of proximal development proceeds along the same path. Instruction should emphasize connections to what the learner already knows in other familiar, everyday contexts.

There is no suggestion that children's everyday concepts may be a hindrance to school learning, nor any mention that school learning is different from learning in everyday contexts. For Vygotsky, however, the school environment is the creation of a special context for purposes distinct from everyday learning. Collaborative interaction within the zone of proximal development focuses on teacher support of student learning as students try to understand decontextualized scientific concepts. It is questionable that
efforts to connect subject matter to students' everyday concepts and experiences will foster their cognitive development.

Vygotsky: School Learning Within the Zone of Proximal Development

According to Vygotsky the higher psychological functions are characterized by reflective control and deliberate awareness, much like the intellectual skills associated with metacognition. Although children about to enter school are capable of showing attention and remembering, these functions are much less under their deliberate control. Vygotsky sought to understand how children's various functions (such as attention, memory, and perception) develop and become distinct. As part of his research program, he studied the characteristics of students' everyday concepts and the ways in which these concepts became subject to their deliberate control.

His research suggested that children's everyday concepts, those learned in "a face-to-face meeting with a concrete situation" (Vygotsky, 1962, p. 108) are unsystematized and characterized by a lack of conscious awareness. Though children are able to talk about the concepts spontaneously and correctly, they have difficulty focusing on them: "In operating with spontaneous [everyday] concepts, the child is not conscious of them because his attention is always centered on the object to which the concept refers, never on the act of thought itself" (p. 92). For example, Vygotsky claims that children may know how to use the words "because" or "brother" correctly, but still nondeliberately; however, when asked abstract questions about the concepts separate from their immediate, concrete experiences, children have difficulty answering correctly. What accounts for these aspects of children's thought is primarily their "lack of distance from immediate experience" (p. 116).
Vygotsky believed that children develop deliberate control over everyday concepts through contact with scientific concepts. Scientific concepts begin in a way opposite from everyday concepts. Whereas children become aware of their everyday concepts much later, the development of a scientific concept, on the other hand, usually begins with its verbal definition and its use in non-spontaneous operations—working on the concept itself. It starts its life in the child's mind at the level that his spontaneous concepts reach only later. (p. 108)

It is through learning concepts separate from the child's immediate, concrete experiences that structures are provided "for the upward development of the child's spontaneous concepts toward consciousness and deliberate control" (p. 109).

Vygotsky's description of experiments involving second- and fourth-grade children helps to underscore this point. The students were given structurally similar problems dealing with course concepts in social studies and problems involving situations in their daily lives. The children were asked to make up stories from a group of pictures that showed the beginning of an action and then complete fragments of sentences ending in "because" and "although." For example, in the situation involving everyday life, students were asked to complete sentences such as "The boy went to the movies because . . . " or "The girl cannot read although"

In the situations involving social studies classes, students would complete sentences involving course concepts separate from those familiar to them. Although one might expect that students would perform better on sentence completions involving their everyday experiences, the problems involving decontextualized social studies concepts were solved more often than the

3 Scientific concepts for Vygotsky include those concepts used in the natural sciences and social sciences. Many of his examples are from the social sciences.
problems involving everyday concepts. To explain the differences, Vygotsky suggested that "the child must find it hard to solve problems involving life situations because he lacks awareness of his concepts and therefore cannot operate with them at will or as the task demands" (Vygotsky, 1962, p. 106).

Thus, as children understand systematically organized concepts learned in school, this learning is "transferred to everyday concepts, changing their psychological structure from top down" (Vygotsky, 1962, p. 93). However, a teacher cannot simply ask children to memorize scientific concepts, have them tested, and expect this to be adequate. First, the children's everyday concepts must already be at a certain level. For example, if a child does not understand causal (because) relationships in everyday speech, he/she cannot be expected to understand them embedded in scientific concepts. But, understanding causal relationships in everyday speech does not mean that the child has deliberate control over these concepts. Adults, however, working within this zone of proximal development, can provide assistance.

Second, collaboration between teacher and pupil is essential for cognitive growth.

Vygotsky does not suggest that teachers working within students' zones of proximal development make immediate connections to what the learner already knows. Initially, the students will fail to establish any connection between academic concepts and events in their daily lives (Luria, 1976). Later, "in the course of further schoolwork and reading" (Vygotsky, 1962, p. 108), the concepts students understood in outline are connected to their personal experiences. Vygotsky suggests that the teacher guide instruction by helping the student understand systematic relationships between concepts. He writes, for example, that an elementary student is able to complete sentences successfully on social science subjects such as "[A] planned economy is possible in the U.S.S.R because there is no private property--all land,
factories, and plants belong to the workers and peasants" (Vygotsky, 1962, p. 107). For Vygotsky, the student is able to accomplish this because the teacher, working with the pupil, has explained, supplied information, questioned, corrected, and made the pupil explain. The child's concepts have been formed in the process of instruction, in collaboration with an adult. In finishing the sentence, he makes use of the fruits of that collaboration, this time independently. The adult's help, invisibly present, enables the child to solve such problems earlier than everyday problems (p. 107).

Vygotsky's description of teacher-student interaction within the zone of proximal development suggests that the teacher's role focuses on helping the student understand decontextualized, systematic concepts. He does not argue that successful instruction depends on making connections to what the student already knows in more familiar settings.

Bruner's (1982) examples of learning within the "zone of potential development" support the view that the primary focus is on the adult's assistance as the student tries to understand the relationships between concepts--not how connections are made to the student's everyday concepts. Bruner also points out the importance of schooling as "joint culture-creating," and later compares the zone to the way "Socrates guides the slaveboy through geometry in the Meno--a kind of negotiation in which the abler frames the questions, the less able replies and gains in insight" (p. 852).

Bruner also claims that the more recent research of Collins and his colleagues on Socratic tutoring programs illustrates how the teacher supports learning within the zone of proximal development. Collins and Stevens (1982) analyzed how expert teachers guide student learning in various disciplines. In geography, for example, a number of different factors could affect rice growing in a country, such as fresh water, a fault area, fertile soil, and warm temperature. As Collins and Stevens (1982) point out, the teacher can use various strategies to help students understand the relationships between
concepts in a discipline:

If a student says they do not grow rice in Oregon because it lacks a flat terrain (which is unnecessary), one can pick Japan which is also mountainous, but produces rice. . . . If a student thought rice could not be grown in Wyoming because it is too dry (which is insufficient because it is also too cold), the teacher could ask, "Suppose that it rained a lot in Wyoming, do you think they could grow rice then?" (pp. 80-81)

In these and other examples from their research, Collins and Stevens (1982) show how teachers try to guide students' understanding through providing hints and props that help them grasp how the concepts in the discipline are related to one another. It is this kind of collaborative support that Vygotsky considered integral to learning within the zone of proximal development. Initial and frequent connections to students' everyday concepts are not essential. His characterization of students' everyday concepts suggests that they may even interfere with learning scientific concepts. Current research in science education supports this view.

Everyday Concepts: Impediments to Learning Scientific Concepts

Rogoff and Gardner's study (1984) indicates that the mothers helped their children to understand the concepts in the school task by showing their relationship to the children's everyday learning. It was through showing how similar the ideas were in the two different tasks that the children were able to assimilate the school task to their existing knowledge and experiences. The authors give the example of one mother who "points out the relevance of transferring information from the familiar setting to the novel one for successful test performance: "See, it's the same idea" (p. 100).

Whereas this kind of assimilative learning may sometimes promote learning, it has important limitations. First, as already discussed, the authors tend to emphasize the importance of making connections to what is already familiar to students. This approach, however, is a restricted view of
assimilative learning. Tasks can be related to any number of things already known, including academic knowledge (Floden & Buchmann, 1984). Second, such an emphasis may neglect the fact that learning in the disciplines often requires significant conceptual change that is initially confusing and unsettling. Connections to students' existing knowledge may not foster their understanding but may instead reinforce their misconceptions.

Driver (1983) argues that as students learn unfamiliar scientific concepts they immediately try to interpret them in terms of their own intuitive notions. By making the unfamiliar familiar, students hope to understand a new framework that is foreign and discomforting. This strategy, however, often results in students misunderstanding important concepts during instruction. Roth (1985), for example, describes how students related the way plants obtain food to their everyday understanding of the ways humans obtain food. The students believed that food for plants was what the plants take in or "eat," such as water, fertilizer, or sunlight. This misconception impeded their understanding of key concepts in photosynthesis, particularly, that plants make their own food.

Similarly, students learning about light believed that they saw objects "because light shines on things and brightens them up" (Eaton, Anderson, & Smith, 1984) rather than being reflected off the objects. Students resisted relinquishing these faulty notions even after further instruction in the concepts being studied. Thus, teachers cannot view students' everyday ideas as something that can be built on and refined. Although it is helpful that teachers take into consideration students' preconceptions during instruction (Roth, 1985; Driver, 1983), sharp breaks between school instruction and students' everyday concepts may more likely promote students' scientific
understanding (see Floden, Buchmann, & Schwille, 1984, in press). This argument is also interesting because it suggests that whether or not there are general cognitive abilities that transfer across contexts, connections to students' everyday concepts to facilitate their understanding of subject matter are still problematic. One of the main reasons researchers of everyday cognition focus on social contexts is because they attribute less power to general cognitive abilities. As a result, they are interested in understanding how skills or knowledge learned in one context are accessed and transferred across contexts. They believe this is facilitated, as stated, through making connections to what the learner knows in familiar contexts. While Vygotsky (1962) clearly argued that schools can develop general intellectual skills, the extent to which there is broad transfer of skills and whether or not schooling can accomplish this are controversial topics (see Laboratory of Comparative Human Cognition, 1983; Royer, 1979; Scribner & Cole, 1981). Nevertheless, even if the broad transfer of knowledge and skills is doubtful, this does not justify trying to build on or refine students' everyday concepts as they learn disciplinary concepts. As the research in science education suggests, science concepts are often so dissimilar to students' everyday concepts that attempts to build on them lead to further misunderstanding.

Conclusion: Rethinking the Zone of Proximal Development for School Instruction

Whereas contemporary analyses of learning outside school is supported by parts of Vygotsky's work, these analyses seldom acknowledge that Vygotsky
also stressed the importance of discontinuity in school learning. One aspect of Vygotsky's theory, the zone of proximal development, is used to understand cognition in everyday contexts without recognizing Vygotsky's critical distinctions about the limitations of everyday concepts to promote school learning.

This use of Vygotsky's theory is common among other educational researchers and seems plausible because of the isolated work many students do in school. A teacher instructing a class often works with a few dozen students and is unable to monitor each one closely and adjust his or her tasks accordingly. Erickson (1984), for example, states that school learning environments remove the teacher's opportunities to scaffold children's attempts at problem solving, especially during tests. These criticisms of schooling are apt, although it does not follow from them, as Erickson suggests, that school learning must be more closely connected with students' everyday lives.

Applebee and Langer (1984), drawing on Vygotsky's theory, analyzed how teachers provided elementary and middle school students with instructional scaffolds as they tried to understand the effects of convection, electricity, and states of matter. These authors argue that either students engaged in classroom tasks are usually not provided adequate support or the tasks are so simple that no support is needed. For example, essay questions may be so hard that students do not receive enough support to complete the task successfully, or multiple choice and fill-in-the-blank exercises so easy that students do not need nor have the opportunity "to reflect on new ideas to integrate or apply them in new ways, or to make them their own" (Applebee & Langer, 1984, p. 186).

Applebee and Langer's analysis, however, seems more consistent with Vygotsky's and Bruner's characterizations of support within the zone of proximal development. For Applebee and Langer, it is crucial that the task
have a clear overall purpose that guides separate activities within the whole. Also, the task must be something that students can do with help but cannot do alone and thus involve "abilities that have not yet matured but are in the process of maturation-or, in Vygotsky's (1962) terms, abilities that are not so much 'ripe' as 'ripening'" (Applebee & Langer, 1984, p. 185). As the authors observed teachers' structuring of tasks and interacting with students, they described how teachers built on knowledge the students already knew from previous science lessons. Moreover, the authors pointed out ways in which the teachers could have provided more support within the structure of the task and created frameworks usable in reading, writing, or discussion activities, or in any area of the curriculum.

Thus, the researchers' analysis of teachers' instructional scaffolding, while taking into consideration the lack of support students usually receive in school, also avoids emphasis on connections to students' everyday concepts. It is important, as cognitive psychologists and anthropologists have emphasized, that instruction be sensitive to the cultural context in which it occurs. This does not mean that school learning must be continual with these cultures or, more specifically, that successful instruction within the zone of proximal development be dependent on making school learning compatible with native cultures (Zeuli & Floden, 1986).

This compatibility seems to be assumed in much of the research that uses Vygotsky's theory to improve classroom instruction and student achievement (e.g., see Tharp et al., 1984). But if this means that teachers, as they provide instructional support, try to make connections to the students' everyday life, then there remains an unresolved difficulty between this view and Vygotsky's position. The interpretation does not take into account Vygotsky's analysis of the limitations of students' everyday concepts or his
emphasis on discontinuity. Since Vygotsky's zone of proximal development continues to serve as an influential framework for understanding learning in everyday and school contexts, it is important that researchers who apply the zone of proximal development to school settings incorporate Vygotsky's analysis of the limitations of everyday concepts. As applied to school instruction, this is certainly not an easy task. Yet, discussion and further study of the issues raised in this critique will help clarify the central educational questions Vygotsky raised and, it is hoped, will raise questions for educators interested in improving classroom instruction.
References

